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ABSTRACT

Abstract

A specified-profile, global analysis code has been developed to evaluate the
performance of fusion reactor designs. Both steady-state and time-dependent cal-
culations are carried out; the results of the former can be used in defining the
parameters of the latter, if desired. In the steady-state analysis, the performance
is computed at a density and temperature chosen to be consistent with input limits
(e.g., density and beta) of several varieties. The calculation can be made at either
the intersection of the two limits or at the point of optimum performance as the
density and temperature are varied along the limiting boundaries. Two measures
of performance are available for this purpose: the ignition margin or the confine-
ment level required to achieve a prescribed ignition margin. The time-dependent
calculation can be configured to yield either the evolution of plasma energy as a
function of time or, via an iteration scheme, the amount of auxiliary power re-
quired to achieve a desired final plasma energy.

Classification 19.9 Magnetic Confinement



PROGRAM SUMMARY
Title of program ASPECT
Catalog number
Program obtainable fromDaren Stotler, PPPL (Internet: dstotler@theory.pppl.gov)

Computers CRAY-2, CRAY-YMP, Sun SPARC2jnstallations National En-
ergy Research Supercomputing Center (NERSC), Lawrence Livermore Labora-
tory; Theory workstation cluster, PPPL.

Operating system3JNICOS, Sun OS

Programming language use&8ORTRAN

Memory required 152000 words

Number of bits in a word64

Number of processors uset

Peripheral useddisk

Number of lines in distributed prograni923

Keywords thermonuclear fusion, tokamak reactor, specified-profile transport

Nature of physical problem

The purpose of this code is to provide a quick, if largely empirical, assessment
of the performance of a tokamak fusion reactor [1,2]. ASPECT first performs a
steady-state analysis at a point in the density - temperature operating space de-
termined according to a set of user-specified criteria. The code then carries out a
time-dependent calculation which can be used to address, for example, auxiliary
heating requirements and helium ash buildup.

Method of solution

For the steady-state portion of the calculation, the individual terms in the global
power balance equation are estimated using user-specified radial plasma profiles.
An expression for the energy confinement time is required; a number of popular



forms are included in the code. The power balance equation is solved using a
Brent algorithm subroutine [3]. The reactor performance is quantified using either
the ignition margin parameter or the level of confinement required to achieve a
specified ignition margin.

For the time-dependent calculation, the temporal variation of the device parame-
ters, the relative plasma density, and the relative auxiliary power must be input. A
feedback procedure for limiting the total heating power in the plasma is available.
Helium ash accumulation can be included with an adjustable global confinement
time. The time-dependent global plasma evolution equations are integrated using
Hindmarsh’s LSODE algorithm [4]; this yields the plasma energy as a function of
time. The integration can be iterated (via the Brent algorithm subroutine [3]) to
determine the level of auxiliary input power required to reach a specific plasma
energy at a certain time.

Restrictions on the complexity of the problem

Although ASPECT is designed for use with tokamak reactors, it should be ap-
plicable to any toroidal reactor device. It is limited, however, in that it considers
only closed flux surfaces; this implies that the cross-section of devices with sepa-
ratrices are modeled approximately. The behavior of the scrape-off layer plasma
is not considered either. A limit of some sort on the total heating power resulting
from plasma-wall interactions would be desirable [5]. The code is also restricted
in that it cannot treat time-varying profiles.

Typical running time
1 -7 CRAY-2 CPU seconds.

Unusual features of the program

The steady-state calculation provided by ASPECT is considerably more flexible
than that provided by similar programs. The ability to solve for the required aux-
iliary power within the time-dependent calculation is also noteworthy.
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LONG WRITE-UP

1. Introduction

Over the last several years, simple global performance calculations[1-9] have
been used to aid in the design of future tokamak fusion reactors. Given informa-
tion about the parameters of the device, and some assumptions about the plasma
(e.g., plasma shape, radial density and temperature profiles, quality of energy con-
finement, plasma composition), these codes can determine the fusion yield. These
programs are generally small and fast, and are thus suitable for incorporation into
larger, more ambitious codes. A primary drawback to the global approach is that
there is no general theoretical basis for predicting the plasma parameters or the
level of energy confinement. Instead, extrapolations from present empirical data
must be made.[2, 10] More detailed scenarios for reactor operation can be ob-
tained by solving the radial transport equations.[11, 12] While the assumptions
made in these sorts of calculations are of a more fundamental nature, they as of yet
have no firm theoretical foundation either (although some progress has been made
recently; see, for example, Ref. 10). Because of the larger size and greater de-
tail of radial transport codes, however, they are generally unsuitable for extensive
scans of reactor parameter space, a frequent application of global performance
codes.

We will describe here thASPECTcode. ASPECTis an acronym for Ad-
vanced Specified-Profile Evaluation Code for Tokamaks. By “specified-profile”
we mean that the user determines on input the radial profiles of the plasma den-
sity and temperature. The code is intended to “evaluate” tokamak reactor de-
signs, providing some estimate of their performance. We describe the code as
“advanced” because of the greater number of options available to the user in com-
parison with related codes.[1-10] This program was developed so that it could
serve as a plasma performance subroutine within a much larger engineering sys-
tems code; we discuss here the stand-alone version &Sk&ECTcode.

This global analysis program consists of two largely distinct parts. In both
halves, the user must provide some information about the radial plasma profiles,
the plasma composition, and the level of energy confinement. The first half solves
a steady-state power balance equation to obtain a unique operating point (i.e.,
plasma density and temperature). The user also selects a pair of operational limits
which delineate limiting boundaries in density and temperature space. Examples
of limits incorporated into the code thus far are limits on: density, beta (defined as

5



the ratio of the plasma to the magnetic pressure), heating power, and temperature.
The reactor performance can either be evaluated at the intersection of these limit-
ing boundaries, or the parameter space can be scanned to determine the optimum
performance within the limits. The performance of the reactor may be quantified
by the ignition margin (at a given confinement level) or by the confinement level
required to achieve a specified ignition margin.

The second half of the code solves a time-dependent generalization of this
same power balance equation. The results of the steady-state calculation are in-
corporated into the time-dependent portion by default. However, the input for this
half of the program is provided via a separate namelist and may be specified in-
dependently. Two modes of operation are available to the user. In the first, the
time-dependent equation is integrated a single time, yielding the plasma energy
as a function of time during the discharge. In the second, the integration process
is iterated upon with various values of the auxiliary heating power, allowing the
code to solve for the auxiliary heating power required to achieve a specified value
of the plasma energy at the end of the integration. An equation for the helium
ash level is integrated simultaneously so that issues such as ash build-up can be
addressed; typically, however, a constant ash concentration is assumed, and this
feature is disabled.

A feedback loop can be used to modulate the applied auxiliary heating power
so that the total heating power remains below some maximum value. The defini-
tion of total heating power is chosen on input from three possibilities.

The rest of this document is organized as follows. The global analysis model
will be discussed in detail in Sec. 2; various aspects of the model are described
in individual subsections. The capabilities and operation of both halves of the
code are outlined in Sec. 3. A number of special properties of our global model
that allow the steady-state and time-dependent equations to be solved numerically
in a convenient manner are presented in Sec. 4. A sample run &SR&ECT
code, including input and output, is contained in Sec. 5. The input variables are
discussed in the first two appendices. The functions and subroutines which make
up ASPECTare briefly described in App. C. Appendix D provides the user with
guidance on how to use the information contained in the error number provided
by the steady-state part of the code in unsuccessful calculations. Finally, a rough
outline of the subroutine calling sequence is presented in App. E.



2. Global Analysis Model

Global analysis codes typically solve a steady-state power balance equation
similar to

Pa—I'POH—I'Paux: con+Prad- (1)

The individual terms represent the volume-integrated contributions made to the
total power balance by alpha, ohmic, and auxiliary heating; thermal conduction
and radiated losses are on the right-hand side. The steady-state portion of our code
will focus on this equation.

Equation (1) is just a special case of a more eneral expression that includes
the time-dependence of the plasma endrgy,. It requires only a little extra
effort to consider at the same time the potentially important effect of helium ash
accumulation. Hence, we will examine in the time-dependent portion of our code
the following coupled set of equations,

dWy,
dttt = _PCON_Prad‘I‘Pa—I'POH—I'Pauam (2)
dNy. P, Npe
= as - : 3
dt g (kBEa prHe) ©

The various terms in Egs. (1) and (2) will be described in Sec. 2.3. In EqQV(3),

is the total number of helium ash particles in the plasimas= 3.5x10° keV is the

alpha birth energyss = 1.6021 x 1071 J/ keV is Boltzmann’s constant, angly.

is the (constant) helium ash particle confinement time. The overall mult{gligr

is used to enable and disable this feature in the analysis. Equation (3) assumes that
the slowing down of fast alpha particles takes place instantaneously. In reality,
the alpha slowing-down time in a reactor is expected to be on the order of 0.1 s
(depending on plasma parameters).

2.1. Shape Dependent Quantities

The shape of the plasma is described by the elongatiamd triangularity).
They are primarily used in computing the plasma volume, cross-sectional area,
and safety factor. In particular, the coordinates of the plasma bourttiaagdz,
are assumed to be

Ry=R+acos(0+dsinb), (4)

and
2, = Kasinf, (5)
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where R and « are the plasma major and minor radii, respectively, énd a
poloidal angle parameter (not the true poloidal angle). Note that these expres-
sions cannot describe a separatrix. Consequentyds are usually interpreted

as being the elongation and triangularity of @€/ flux surface in a diverted
tokamak geometries.

The plasma cross-sectional aréaand volumel” are computed numerically
from the integrals

AxEQ/Omdz /_aad:z;, (6)

and » .
V= 2/ dz / 2r Ry dx, (7)
0 —a

wherex = R, — R.
The cylindrical equivalent safety factor is calculated using the expression[8]
ma’Br

= — 2 2 _1.28°
qcyl MO[pR [1 —I_ K (1 —I_ 25 )]7 (8)

where Br is the toroidal magnetic field], is the plasma current, and, is the
permeability of free space. An alternative estimate of the cylindrical safety factor,
often referred to as the engineering safety factor, is given by

ma’k Br
Qeng = .
g ,u()[pR

(9)
Incorporating in an approximate fashion the effects of finite aspect ratio yields
an estimate of the MHD safety factor at &% flux surface

1.17 — 0.65a/ R
[ —(a/R))

(10)

q95 = eyl

In some instances, it is desirable to specify and have the code determine
the value ofi,. In these cases,,; is computed from

g 1= (/R
et = 0 (11T = 0.65a/R)

(11)

where(’;, is an adjustable coefficient (= 1 by default) used to calibrate this ex-
pression to the results of a numerical equilibrium. The code then inverts Eq. (8)
to obtain/,.



2.2. Profile Shapes

Codes such a&SPECTare zero-dimensional (0-D) in that no radial transport
equation is solved. However, they are more correctly referred to as specified-
profile since the plasma profiles are all specified on input. Presently, there are
two generic forms for these profiles in our code. The first assumes a parabolic
dependence of the density, temperature, and plasma current density on radius,

Y = Yol —r?/a) (12)

whereY is replaced by:, T', and./, respectivelyr is the local minor radius. The
profile shapes are then determined by the input values ofi;, anda;.
The other profile form attempts to mock-up the effects of frequent sawtooth os-
cillations[13] which tend to flatten the profiles inside of the mixing radiys ~
r,=1 (¢ Is the MHD safety factor). Nonzero pedestals at the plasma edge are also
allowed with this form. A linear behavior is assumed betweemnthel surface
and the edge:
Yo 0 <r < rmix
Y‘{(%—K%gw—mmmwmg+n@ o <r<a, 3

The subscript “0” (“edge”) will be used to designate the value at 0 (» = «).

These trapezoidal profiles are used for density and temperature; the current density
is taken to be/ o 7°/? as one would expect in resistive equilibrium with classical
resistivity.

A third option combines the parabolic density variation with the trapezoidal
temperature profile. Interpretations of empirical profile data have progressed in
such a way as to make this combination particularly easy to calibrate.[10]

A number of integrals over these profiles are computed prior to the start of
the main calculations. Itis assumed for this purpose that all flux surfaces have the
same elongation and are concentric. The resulting “form factors” appear in the ex-
pressions for the terms in Egs. (1) and (2) provided in Sec. 2.3. For parabolic pro-
files these integrals can, with one exception, be performed analytically. Namely,
we define

1 a
Gline = _/ dr Mv (14)
a Jo Mo
2 a
g = _2/ rar M) (15)
a 0 Mo
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1
+a,’

1
gor = 22 /Oardr M, (16)

a noTo

1
l+a,+ar’

oo = S0 B[R] e

a? o TO

1
— 1/(1—|—20zn—|—§aT),
2 ra J(r)
= — d
wo=
1
1—|—Oét]7

2 e I [1()] 77
YJohmic — ﬁ 0 Td?“ [ JO ] [TO] 9 (19)

(18)

3
— 1/(1‘|‘20{J—§Oéj).

The arrows indicate the values obtained with parabolic profiles.

Throughout this document, we will make use of the following notation for a

volume integral:
2 a
()= = [ rdr i), (20)

In particular, when discussing density we will usually refer to the volume-averaged
electron densityn. ). Likewise, we will use the density-weighted, volume-averaged
temperaturé?’),, = (nT")/(n) when considering the plasma temperature. Note
that throughout these calculations we assume that the electron and ion tempera-
tures are equall, = 7; = T'. In terms of these average quantities and the above

form factors, the central values for the density and temperature are given by

TO — <T>dwgnT7 (21)
and
gn



2.3. Power Formulas

In this subsection, we consider in detail each of the terms in Eq. (2). The alpha
power is computed using

2V e
Pa == CaEa—z/ rdr nDnTﬁDT, (23)
a 0

where(, is a constant multiplier (usually’, = 1). The reactivity,sopr, IS
calculated with a formula obtained by Hively [Eq. (5) of Ref. 14] in order to
ensure correct results in all temperature regimes. Consequently, this integral must
be computed numerically for each value(®) .

The ohmic heating power is (all units are MKS with temperatures in keV,
exceptions will be noted)

Pon = Conl.65 x 107 Z. s Avvne Ty 2 T2V gopmie (24)

whereCoy is a constant multiplier((o; = 1 normally), Z. s, is the effective
charge,
Ao =37.8 — In((ne)2 /{T)aw) (25)

and is the Coulomb logarithmyy is the neoclassical resistivity enhancement
factor (taken to be a constant,2.5). The central current density is given by

[p

Jo= —.
0 Ang

(26)

Both bremsstrahlung and synchrotron radiation are includé,in= P,,...,+
Pyyne. We take

Pirem = Chrem1.68 X 101 (n00/10*)2(Ty /10) 2 Z 4V graths (27)

where againCy,.,, is an arbitrary multiplier, usually set to one. For the syn-
chrotron radiation, we use an expression developed by Trubnikov[15],

Poyne = Csyne6.214 x 1077 (n W1 g, B3OV (28)

The yield coefficientb is written in the form
G
d="22/(1-R),
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where

N

Glapne = 5.198 x 1073(T)2, (1 +92.61— ) ,
R(T)g

w

and )
VA =778 x 107° (M) ;
Br
R is the wall reflectivity. For most application$,,. < Py, (providedR is
not too different from unity, as is expected); heneg,.. is usually excluded from
the calculation by settings,,.. = 0.
Finally, the conducted losses are written as

Pcon — Ccon%a (29)
TE
where the total thermal plasma energy is given by
3 1,
Wiaw = Skalnd(Thao (142 ) V. (30)

Again, the overall multipliet’.,,, = 1 by default. The next subsection will discuss
expressions fofy.

2.4. Energy Confinement Time Formulas

It has been standard practice over the last several years to treat ohmic con-
finement ¢o ) differently than that found in auxiliary heated experiments.().
A smooth connection has been postulated[16] for the transition between the two
regimes

N

TR = (7'5]2_1 + TG_fl,) (31)

Since this choice for the exponent “2” has no firm theoretical basis, our code
allows a more general expression,

75 = (e Tom)"" + (r,Taua) 71" (32)
In the limit of an infinitely sharp transition Eq. (32) becomes

TE = Min(¢r, TOH s Cry Tauz )- (33)
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This form is also available in the code and is used{Qr. expressions which

have been fit to data that include ohmic and low (as well as high) auxiliary power
discharges.[17, 18] Such expressions should be capable of describing the confine-
ment behavior for all heating regimes. In this case, we take the minimum with
7oy Solely in order to obtain reasonable behavior in regimes where we would not
expectr,.. to be accurate [for example, when the net input poRer— 0; P,

is defined in Eq. (46) below].

The arbitrary multipliers;,, andc,, (variablecctaue inthe code) have been
inserted in the above equations to allow greater versatility in the usage of existing
scaling expressions. For example, it has been found that the confinement times
in H-mode operation scale roughly as a constant times the corresponding L-mode
value (typicallyc,, ~ 2; see, for example, Ref. 10 and references therein). This
allows predictions of H-mode behavior to be made in advance of the development
of well-established H-mode scalings. The choice ofthecaling expressions to
be used in Eqg. (32) or (33) is made via the input variablesnd/., (Itaue in
the code); the values associated with each scaling are given below.

Of course, the code also permits single scaling expressions to be used by them-
selves. One must take care when using auxiliary heated scalings in this manner to
avoid regions of very lowT'),,; not doing so could lead to very lard® ;;, small
P,, and consequently unphysical results.

We will now list the available scaling expressions in the present version of the
code. The only ohmic scaling is the neo-Alcator formula, obtained fith- 1,

(see, for example, Ref. 8 and references therein)

TNA — 7 X 10_22ﬁ6aqucyl, (34)

wherer. is the line-averaged electron density (see Sec. 2.5). While other ohmic
scalings may work as well, the ohmically heated behavior of reactors is of rel-
atively little importance in comparison with the auxiliary heated performance.
Consequently, there has not been a great deal of effort expended recently to re-
fine and unifyro scalings. We find it expedient to utilize Eq. (34) in all cases,
eliminating this degree of freedom from the problem.

There have beemanyL-mode scalings presented in the literature. The few we
include explicitly in the code have enjoyed more widespread use than the others.
We first list the power law formulas, starting with the Goldston expression[16]
(gﬂ‘ = 4)

ZZ' 0.5
TG = 6.432 x 107° (ﬁ) &9 1(10%a)" T (10 R)V T P05, (35)
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The mass scaling4;, average ion mass in AMU) was added some years after the
original publication.

A more careful analysis of a larger database led to the Kaye-Goldston scal-
ing[19] (-, = 3),

I N\ /@ 026 —0.49
_ —7.56 .0.28 »—0.09 P € 2
TG = 10779808 po (ﬁ) (1019) (10 a)

« (1023)1.65 (%) 05 (ﬁ;6)—0.58‘ 6)

This regression was revised a few years later, resulting in the neo-Kaye ex-
pression[18] (., = 2)

108

e \"M g5/ P\ 70
x(@) A; (106) ' (37)

A scaling was developed by the T-10 group[18] & 9) is used in our code,

ThK = 0.0617 (_p)ll? RI'BG_O'MKJO'QSB%M

. Pzn —-0.4
Tr—10 = O.O9aRBTZ? 5/4;0'5p%2? (106) , (38)
where
2 I, ! 3 1s5\7!
o =22 (1) (o) o

is an empirical scaling for the ohmic heating power.

While working with the extensive ITER L-mode database, Kaye developed
several new scalings. Two were designated as “complex”, referring to the compli-
cated regression procedure used in the analysis[18]. One included all tokamaks in
the database and was correspondingly labeled Kaye-All-Complex (5),

o 0.0521 A% 025 i 085 ¢\ 30:3,,0-3 085 & 0 (40)
A = BAREA T \ Tpe o) T )

The other treated only the larger tokamaks in the database and was named Kaye-
Big-Complex (,, = 6),

05 [ 0.85 ﬁe 0.1 Pz —0.5
e = 0.082A4; "k (ﬁ) (1019) BY?a’®R® (W) . (41)
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With the development of the ITER L-mode database, the choice of regression
variables and their units became standard. Consequently, it is convenient to incor-
porate into our code a general scaling expresdionL 8) based on these standard
variables,

. AN .\ P to
Tiwp = tlA?/itS (ﬁ) (W) B¥a" R (W) ) (42)

The exponentg; — t, are specified on input. With this scheme, we have been
able to utilize easily any of a large number of L-mode and H-mode scalings in our
calculations.

Two offset-linear scalings are sufficiently popular to warrant inclusion in the
code’s repetoire. The generic form for an offset-linear scaling.is = ;.. +
Wy/ P,,; formulas must be provided for both,., the incremental confinement
time, andiW, which has the units of energy. The Odajima-Shimomura expression
(¢;, = 10) is given by[20]

—0.5

quos = 0.085/4;@214

7

I _e 0.6 L
Woos = 0.069 106# (17819) B%'ZRI'6a0'4/£0'2A?'5Gos, (43)
where 06
15 = Zes \"° [ 3qeyi(qey +5 '
20 (Geyt +2)(qeyt +7)

The other offset-linear expression was developed by Rebut-Lalliaf21
11),

I 1.590-5 ~—0.5
6 ( Me 0.7 - I 0 2.75 r70.25
WO,RL = 0.206 x 10 (1020) (BTA2—106) L Zeff? (45)

wherel = (Ra*x)'/? is an average size parameter.

One other option is available to the useg: = r;, = constant{,, = 7). This
can be used by itself or with some other scaling [in Eq. (32) or Eqg. (33)]. In the
latter case, the constant confinement time forms a prescribed lower bound below
which 7 cannot fall.

We usually write for the (net) input power used in the confinement scalings
the heating power minus the bremsstrahlung radiated power,

Pin:Pa—I'POH—I'PauaU_Prad- (46)
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We do not include here, nor in Egs. (1) or (2), the impurity line radiation arising
from incompletely stripped impurity ions. In a reactor, this type of radiation is
expected to appear only in the cool edge plasma and should not affect the core
plasma confinement. Furthermore, since corrections for impurity line radiation
are not usually made in performing regression analyses on the energy confinement
time, its effects are in a sense built into the empirical scalings-for So, we
include in our expression fak,,, only radiation mechanisms which give rise to
centrally peaked losses.

By subtracting direct core plasma losses from the heating power when com-
puting 7., P,, becomes the net power flowing into the “good confinement” zone
between the core and the edge of the plasma. This practice is standard in 0-D
calculations[1-3, 8] and has some basis in more detailed simulations[22].

Physically, it is more satisfying forz to depend on purely thermodynamic
plasma parameterg(andW,,;). This is the sort of form one would expect to de-
rive from a transport theory in which the fluxes are all determined by local plasma
parameters (rather than the total power flow; see, for example, Ref. 22). We can
use Eg. (1) to convert expressions like the ones presented above into functions of
n. andW,,,. First, consider a single power law scaling

TE(Pwm) = 7P, (47)

where f, contains all of the nonpower dependence (including the multiplier
Using the definition of".,,, and Eq. (46) forP;,,, Eq. (1) becomes

tot
p, — Wit (48)

TE

Inserting Eq. (47) into Eq. (48) and solving féy, yields

1/(1—)
P, = (”J/j“‘) . (49)

Substituting back into Eq. (47), we obtain finally

)1/(1—w)‘

i (Wiot) = (F: W07 (50)

An analogous procedure applied to an offset-linear scaling of the form

5(Ln) = ¢; (Tmc + ]I/ZO) (51)
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yields

CrTine Wtot
Wtot — Cr WO

Since scaling expressions are based upon nearly steady state data[18] for which
dW,./dt < P,,, the energy and power forms fit the database equally well. Hence,
there are no empirical reasons to choose one over the other. When the plasma is
not in steady state, however, the two forms gfjield different values of W,/ dt
[from Eq. (2)]. In particular, the power form ef; can nearly double the time re-
quired to add a specified increment to the plasma energy relative to that needed
with the energy form of the confinement time.[1]

TE(Wiot) = (52)

2.5. Density Relations

All species are taken to have the same radial profile (discussed in Sec. 2.2).
Using the definitions. = -, Z;n; and

Zeff = Zj ZJQn]

(53)
e

(the sums are performed over all ionic spegi®gth chargeZ; and density:;) at

fixed (n.), Z.;; andng./n., and assuming one impurity of charge we obtain

the relations

1 e
"p tnr [Z—Zeff—z(Z—Q)”H], (54)
Ne Z -1 .
ny 1 ( np + nr nHe)
Yoo (7, - 4 :
. 72\ Zets ne o (55)
and
n; np +n NHe n
o 2T TR 7 (56)
e e e e

A fixed ratio of np/(np + nr) is used to compute the deuterium and tritium
densities fromnp + nr)/ne..

Three different empirically derived expressions for the tokamak density limit
have been incorporated into the code. The oldest of these is the Hugill limit[23]

B
emaw = h—— 102"m >, (57)
RQCyl
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Values of the line-averaged density are converted to volume-averages using the
profile form factorg;,..,

n = <n>gline /gn- (58)

Greenwald[24] examined a large amount of data from several different toka-
maks and concluded that the expression
1
ﬁg?:neszwald — _p2 1020m—3 (59)
! ma
did the best job of bringing the data into line; Marfes appeared at abous8&@ —
of this value. On the other hand, JET beam-heated discharges were found to be
limited by[25]
_JET 2Br 20 -3
= —— 10""m™. (60)
RQSng
This limit also worked reasonably well for ohmically heated cases with pellet
injection[25].

The most recent evidence (see, for example, Refs. 26—29) indicates that the
density limit should actually be a function of input power, as would be appropriate
for a density limit caused by excessive impurity radiation. Formulas of this type
have not been incorporated into the code as yet.

e,max

2.6. Plasma& Values

The thermal plasma beta is given by the familiar expression

2 i
B = 220 (Taw (14 21)). (61)
T e
To find the contribution due to fast alphgs, we make use of the formulas in
Refs. 30 and 31. The critical alpha energy at which heating of the background

ions equals that of the electrons is given by

VATIILY :
Eoit = 59.2(T) 4w (Z anJA?)
etlesly

J

np Ap ( np ) A7) np +nr
= 59.2(T)uu S -t
59-2(T)a ({ [TLD +nr Ap - np +ny/ Ar Ne
Z2A
+22 Z}/Ae) . 62)
Ne AZ
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For simplicity, we approximate the atomic mass of the impurity ionlas~ 27;
of course,Ap = 2 and Ay = 3. The ion Coulomb logarithms are calculated
using[30]

Aj =455 +1In : (63)

(L) 2t

whereA,, = 4; the electron Coulomb logarithm is given by Eq. (25).
Having found this critical energy, we compute a critical velocity ratio

o :(E“)%. (64)

Verit Ecrit

We also need the slowing-down time

B <T>dw % 1020 (H)
@_osm( 0 ) ) (65)
The average fast alpha energy (in Joules) is then calculated using
N 2 Rt
Ea _ kBEoz (1 . (Ucmt) {llﬂ [1 + (UOZ/UCT’“‘)B
2 Vo 3 (1 + Uoz/vcrit)
1 1 [ 200 Ve — 1 T
+—[2tan™t | )+ = . (66
Al (=) ) e

The time for the fast alphas to thermalize is

Tth:%hl [1—|—< o )3] (67)

Verit

Finally, defining the alpha source rate density= P, /(E,V'), we can write
down expressions for the fast alpha density

Ng = SaTth7 (68)
and the fast alpha
B, = Hop g (69)
a = 5o oaraTs-
B3
The total plasma beta is then
B = Bun + Ba- (70)
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The above expressions are all valid locally. Strictly speaking, we should com-
pute the volume-averaget], by integrating Eq. (69) over radius since each of
S., £, andr, depend on. Instead, we have for simplicity inserted the volume-
averaged quantities everywhere in Eq. (69). A few comparison calculations indi-
cate that the error incurred is negligible.

Limits on beta are calculated using the Troyon scaling[32, 33]

1,/10°

1072 71

6max = 9p

where the Troyon coefficient; ~ 2 — 3 typically.

3. Code Capabilities

The ASPECT code is divided into two logically distinct pieces. The first con-
siders Eg. (1) and determines an optimum operating point according to a user-
specified criterion. In the second half, the time-dependent behavior is considered.
By default, the code incorporates information from the steady-state analysis. But,
in general the plasma conditions, and even the machine parameters, can be differ-
ent in the two calculations.

Summaries of the input variable names, their default values, and their meaning
in the calculations are given in Appendices A and B. A documented sample run
is presented in Sec. 5. Here, we describe the effects of the input variables in more
detail.

3.1. Steady-State Performance

The choice of density limit is determined lynurak . If nmurak = 1, the
Hugill expression for the maximum density is used [Eq. (57 )epresents the
input variablehugill ]. Likewise, if nmurak = 2, the Greenwald [Eq. (59)]
limit is utilized; if nmurak = 3 the JET [Eq. (60)] expression is employed. If
nmurak = 4, the maximum volume-averaged electron density is specified on input
by the variablelenmax.

The second variablepwr , provides another limiting surface {n.) - (1) 4.,
space, giving the code enough information to uniquely determine an operating
point (that is a particular set ¢f..) and(7'),,). If npwr = 1, P, is required to be
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< xpalmx. Similarly, if

4, P, + Py + Pog < xpalmx,

3, P, + P, < xpalmx,
npwr =
5, Po+ Puw+ Por — Prod < xpalmx.

If npwr = 2, it is assumed thatl’) is limited to < tkvmax. If npwr takes any
other value (e.g., 0), the total plasmias forced to remair< 3,,.. [EQ. (71)].

A final possible combination of the two switches involves settingurak to
something other than 1, 2, 3, or 4 (e.g., 0). In this case, the limit specified by
npwr is used to determine the maximum density 8nunax sets the maximum
(T) oo -

The code is capable of either computing the performance at the intersection
of the two limits specified byyimurak andnpwr or scanning along the limit-
ing boundaries to find an optimum operating point. To obtain the former, the
user would sehoptm = 0. By using any other value (e.gnpptm = 1), the
optimization is carried out. As will be demonstrated in Sec. 4, reactor perfor-
mance is usually maximized by operating at the highest density allowed. Hence,
by scanning along the limits itw.) - (T")4, Space, one can obtain the optimum
performance over the whole operating space. If the chosen confinement scaling is
such that this assumption is violated, the performance will always be computed at
the intersection of the limits.

The objective of the steady-state calculation is determined by the swaigh.

If ncig # 0 (e.g.,ncig = 1), the code solves for the confinement multipker
needed to achieve a specified ignition margim . We define the ignition margin
by b
Mr= Py + Praa (72)

This is related to the more famili@) = P;.,/(P... + Pon) (the fusion power
Pfus = 5P0z) by

O- 15MAI/[ ‘

- I

The ignition margin is preferred since it is well-behaved in the ignited regime
(Mr > 1).

The confinement multipliers are defined according to Egs. (32) and (33). If
there is only one scaling forz, there is no possibilty for confusion. If there
are two scalings, the multiplier on the second scalings solved for. That is,
it is assumed that the two components of Eq. (32) or (33) are indeed an ohmic

(73)
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and an auxiliary heated scaling. The multiplier then represents the confinement
enhancement factor required with the specifigd to reach the inpud/;.

If noscalings are specified;; is taken to be a constant. Then,= 75/7,
wherery is the confinement time required to achieve = xmi, andr, is a
user-specified constant confinement time (given by the variabta ).

An upper bound o¢, = 10 is used during the solution procedure; this value is
chosen on physical rather than numerical grounds (see Sec. 4). Note in particular
that during an optimizing search ovéf),,,, there may be at low!"),,, no finite
value ofe¢, for which M; = xmi (e.g., P, — P..q < 0). At such points, we set
¢. = 10 and proceed with the search. As long as more reasonable values can be
obtained at highe{7'),.,, this causes no problem.

If ncig = 0, the code uses the input specification(s)doand computesd/;
in the manner desired.

In all cases, the value of; required to achievé{; = 1,

CconWtot
max|( Py — Praa), 1 W]’

Tig =

is also determined. Note that &; = 1, F,.. = —FPoy, notP,,, = 0 asis
usually assumed at ignition. This is a trivial point, but is of some importance in
the time-dependent calculations.

3.2. Time-Dependent Performance

In the simplest situatiom¢indp = 0), this part of the code integrates Eq. (2)
as a function of time using initial conditions and time-dependent parameters spec-
ified on input. The result of the calculation is the plasma energy (in effect, the tem-
perature since the density evolution is prescribed) as a function of toe®veen
initial and final times/;,,;; andt, respectively. The input parameters are chosen
via a second namelist that is independent of the first. In fact, the time-dependent
portion can analyze a device that is completely different from that considered in
the steady-state part of the code.

If nfindp # 0 (e.g.,= 1), the code iterates oR,,. to determine the value
required to achieve a desired final eneitjy, ; at timet;. SinceF,,, is in gen-
eral time-dependent, the code actually determines its maximum Yalue,..;
the input array representing the auxiliary power is renormalized after input so that
it can be used &%,/ Pouz.maz] (1) (the same prescription holds fefindp = 0
except that the user specifi€s, . ...,). By default,IW,.; ; is taken to be the total
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thermal energy at the operating point calculated by the steady-state portion of the
code. In this way, the steady-state calculation can determine an optimum den-
sity and temperature, and the time-dependent analysis can compute the auxiliary
power required to get there in a specified amount of time. Note that output is
produced only for the final value @,... 4.

Helium ash accumulation is controlled by the variaddsh [, in Eq. (3)].

If C,sn, = 0, the time-evolution of the helium ash concentratiof. /n.(t) is
specified by the inputarrayrnane(i) . If C,5, # 0, aninitial number of helium
ions Ng.o (Xnhein ) is assumed to be present at the start of the calculations,
and Eqg. (3) is integrated to determine the time evolutionVgf.. Note that if
Cash # 0, solving for P, mq. (nfindp # 0) may give unreliable results and is
not recommended.

The level of auxiliary power can be modulated via a feedback loop to limit the
total input power, as was done in the steady-state part of the codeuith. In
this case, settingfdbak =1, 2, or 3 forces,.. + P., Puwe + Po + Pon, OF
Poue + P+ Por — Prq4, respectively, to bel P, ... (Xpinmx on input). When
3 < npwr < 5,nfdbak isdefaulted taipwr—2, and?;,, ... IS Set taxkpalmx+0.3
MW; the additional 0.3 MW provides a little “headroom” to allaW,,.. ... to be
determined more easily wheifindp # 0. If nfdbak is something other than
1, 2, or 3, no feedback is performed. Time-delay problems make it difficult to
maintain P, = constant via feedback;[34] hence, that option is not available.

The input time-dependent waveforms consist of several time breakpoint arrays
and one or more parameter value arrays for each. For example, thétdainy
provides the time breakpoints fa(t), R(¢), ~(¢), andd(t); the latter are input
viaarmin(i) ,armaj(i) ,aelong(i) ,andatring(i) , respectively. The
number of breakpoints is given mtbk , which must be< 30 given the present
array dimensions. In some instances, it may be desirable to specify a particular
g (1) evolution.[35] If so,a(?) and R(t) are calculated from.,;(¢) and Eq. (8)
[inputviaaqceyl(i) ]by assuming:(t)+ R(t) = ass + Rss, where the subscript
“ss” denotes the value used in the steady-state calculation.

Density-related parameters are controlledtugk(i) ,1 < < ntnbk; the
associated parameters dre)/(n.) (1) [adenav(i) ], Z.s;(t) [azeff(i) ],
andng./n.(t) [arnane(i) ]. Note that determiningn.)(¢) requires two pieces
of information. Following the namelist read statemepnt,)/(n.)s(t) is renor-
malized to a maximum value of 1. The maximum or “flattop” density) ;; is
specified by the variablgenflt . Thus, the density computed in the steady-state
part of the code can be incorporated into the time-dependent calculation via the
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default settingn. ) s+ = (n.)ss While still allowing an arbitrary time-dependence.

Time breakpoints for the plasma currefytt) [acurnt(i) ] and toroidal
field By(t) [abtor(i) ] are given by the arrayibk(i) , 1 < ¢ < ntibk.
Time-dependent confinement multipliers(t) (; = 1, 2) can be specified via
actaue(i,)) according to the time breakpoints settthk(i) ,1 < <
nttbk.

The value off,....(t) is specified in much the same way(as)(¢). The overall
time-dependence is prescribed &yyaux(i)  with time breakpointspbk(i)

1 <1 < ntpbk; this array is renormalized to have a maximum valué’gf; ...
(xpaumx). If nfindp # 0, P,...maq IS Varied so that the plasma energy achieves
Wiei,r atty. Also, if feedback is invoked witmfdbak = 1, for example, and
Po(t) 4+ Pous(t) > Pinmazy Paus(t) 1S reset toPi, maz — Pa-

The routineLSODH36] is used to integrate Egs. (2) and (3); the Adams
predictor-corrector scheme (chord method with numerically calculated Jacobian)
is employed. Actually, three equations are integrated. The third computes the
diagnosticd¥,.., defined as[10]

t
Wiear(t) = /t dt (P + Puwe + Porr) . (74)
This represents the integrated power input to the plasma and is thus related to
the total heat deposited onto the divertor or limiter targets. In order to obtain a
conservative estimate of the actual heat transmitted to the target, radiation is
subtracted here.

As LSODE proceeds, it calls a subroutine that evaluates the right-hand sides
of the equations foW,,;/dt, dNy./dt, anddW,..;/dt at a particular time.
A linear interpolation scheme is applied to obtain parameter values wieis
between the input breakpoints. If the number of breakpoints is.sebr if ¢ <
the first breakpoint time, the first value in each associated parameter array is used.
Likewise, ift extends beyond the last time breakpoint, the parameter value at that
last breakpoint is employed.

The present defaults are similar to those described in the BPX Physics Design
Description[10]. The plasma current is ramped up linearly avetmp = 7.5 S;
the beginning of the current ramp is designated as 0. The toroidal field is
ramped up much more slowly; a bilinear waveform is assumed. The actual values
are given in App. B. At the end of the flattop £ tramp + tburn = 17.5 S),
I,(t) and By (t) fall linearly to 0 andzzt£3 - By, respectively, at = tramp +
tburn + tdump = 25 s (zztf3 is defined in App. B).
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The minor radius is taken to have its full value for> 1.5 s up through the
end of the flattop. The evolution ef¢) at earlier times is generally complicated.
Hence, most of our simulations begintat 1.5 s. For completeness, a simple
linear ramp froma(¢ = 0) = 0 is prescribed. The default plasma elongation
is brought up from70% of its flattop to value tal00% betweent = 1.5 s and
t = tramp. Similarly, the default triangularity increases fratt% to 100% of
its flattop value during the same period. We arbitrarily set the values of these
two parameters at = 0 to bex(t = 0) = 1 andd(t = 0) = 0. During the
shutdown,«(t) andé(t) fall linearly to O; over this same period(¢) drops to
1. The default major radius is chosen so that with the above-prescribbed
a(t) + R(t) = ass + Rss. This is required for the outer edge of the plasma to
remain in contact with the ICRH antenna.

By default, the plasma density rises linearly from O during the current ramp-
up, and drops back down to O during the shutdown. Each.ef(t) = Z.s¢ss,
[(nme/nel (1) = [nme/nel,,, mn(t) = Tinss, ande, (1) = ¢, 5, are by default con-
stant and take on the values assigned in the steady-state calculation.

The input array describing, .../ Pouzmax(t) 1S defaulted to 0. Nonetheless,
the actual default prescription for the time-dependence of the auxiliary power is
nontrivial. Unless some element of the input aregyux(i) > 0, the code uses
the toroidal field evolution to estimate the radius of the ICRH resonance layer,

rees = R(1) [1 _ B ] : (75)
BT 4
We assume that the radial variation of the magnetic field is givelply-)
1/[R(t) — r] (the resonance point moves out in major radius as the toroidal field
increases), and that the resonance layer is at the magnetic axisBylehieves
its maximum valueBy 4. If 75 > a(t)/2, P, is set= 0. For resonance layers
inside this radius, the heating efficiency is taken to be equal to the relative density
at the layer:[37]
P Ne(Tres)

Pruwmar . 1(0)

Thus, during the flattop, heating will A80% efficient.

(76)

4. Basic Properties of the Model

There are several analytically derived properties of this model that allow the
solutions to Eq. (2) to be obtained numerically in a convenient fashion.
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First consider a situation in which we are solving for the value,akquired
to achieve a certaid; (ncig # 0). From Eq. (1) and the definition of the ignition
margin, Eq. (72),

11— M;
M;

This expression enables us to solve Eq. (1) directly for the value ¢ivhich

enters intoF,,,, through the definition ofz) by eliminating the unknow®, ...

In cases where the power form=af,. is being used, we can go one step further
and obtain a reasonable lower bound on the solutiolamely, if we know~, .,
we can compute’;,, [Eq. (46)] for a given(n.) and(T")4,. The code can then
evaluate the auxiliary heated confinement timg.. By definingc; = 75/ Taur
the code can easily calculate that in steady-state

Paux:(Pa—l'POH)

(77)

! Wtot
= ) 7
“ PinTauac ( 8)
From EQ. (32)75 < ¢;Taus, thus
c < (79)

is a lower bound for the desired solutien The Brent algorithm[38] used to solve
Eq. (1) also requires an upper bound be specified for the solution. Since we do
not expect confinement timesg; > 7,.. (€.g., H-mode confinement is presently
about twice as good as L-mode), we set an upper bourd 10.

In cases where the code is solving 8y, at a givenc,, one bound on the
solution can be obtained using the quantitigs, and P, .., o defined as

Pio =P, + Pony — Prag (80)
and W
Pouzo = ——2— — Pip. 1
7 15(Poo) X (81)
We can write down an similar expression @y, . using Egs. (1) and (46),
Pauac — WtOt - Pin,O- (82)

TE(Pin,O + Paux)

Comparing Egs. (81) and (82), and assuming increased input power degrades con-
finement, we have

> >
Pauac { < } Pauac,O for Pauac { < } 0 (83)
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These expressions provide an upper or lower bouné@fgyr, depending on its
sign. A subtlety of this procedure is that the decision of which case applies must
be based orF’,,. o since the sign of’,,.. is not known a priori. But, it can be
shown that as long a§ P;,, 7] /dP;, > 0 forall P, Pous - Pauzo > 0.

The optimization procedures used in the steady-state part of the code assume
that reactor performance improves monotonically with increasing electron den-
sity. We will now outline the conditions under which this assumption is valid.

Defining

01N Tyys
=— 4
and 91
nTaul’
o = ah’l<ne> 5 (85)
it can be shown that
aMI . MI Pcon ll - 27 + o+ 2 (Tauac/TNA)xT (86)
a<ne> cr <ne> Pcon + Prad 1— Y + (Tauac/TNA)xT
Furthermore,
e 1= 2 4 ot 2 (e ra)) (87)
= — — 27 (&7 Touz | TNA .
Ine)ly, (e

Of course, for a simple power law scalinganda are just the exponents dn,,
and(n.). Thus, we can see that all of the power law scalings listed in Sec. 2.4
(except neo-Kaye) yield

OM;
a0y ) >0 (88)
and 5
C
a < 0. (89)
ne) |,

The same is typically true for the offset linear scalings discussed in Sec. 2.4.
Specifically, the requirement is that < 3.57;,. for the Shimomura-Odajima
scaling andy < 57;,,. for Rebut-Lallia.

Thus, regardless of whether the code is solving for the maximijrat a given
¢, or the minimume, at a given/;, the optimum density at any value ¢f) .,
is the largest density allowed by the specified limits. The code then need only
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scan(T') 4, along this limiting boundary to determine the optimum performance.
Optimization is not allowed when neo-Kaye scaling or an externally specified
scaling withl — 2y + o < 0 (i.e., 0.5 + txp(9) + 0.5txp(5) < 0) is requested.

It can also be shown that the extremumidf on the limiting boundary occurs at
the sameT'),, as does that of,. Namely,

oMy dc,

= ATy

(90)

MI‘
5. Sample Run

In this section, we discuss the input and output from a typical run of the AS-
PECT code. This case represents a reference operating point for BPX[10].

The format of the file shown in Fig. 1 is appropriate for use with namelist
input under the UNIX operating system. All characters on a line after a “!” are
ignored; this facility makes it possible to document the input file as shown below.
The name of the input file must h@sinp ; both namelists are read from this
file.

There are a few items of particular interest in this input file.

e Settingcip = 0. allows the value of,, to be read in througburma .

e The subroutin&STRIPX will remove everything in a line after d *. This
allows the input file to be commented in the manner shown.

e The 1989 ITER-P L-mode scaling[39] is used here. Note that the comments
are particularly convenient in helping the reader remember which exponents
go with which variables.

e The namelists are terminated $gnd .

¢ In the second namelist, all time-dependent variables have their default val-
ues except fofn. ) /(ne)mar @NA Pous / Poe.maz- The flattop density is taken
from the result of the steady-state calculation.

e We setdtout = 0.5 s to make insertion of the output in this document
easier. If the time-dependent output is to be plotted, a smaller value (e.g.,
dtout < 0.2 s) would be more desirable.
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The steady-state calculation write its output to a file cgtisdut  following
an “echo” of the input file. The results obtained from the sample run are presented
in Fig. 2.

We should point out that

e The currentl, is shown since it is calculateddfip # 0.
e The second line provides.) (in m=) and(7") 4, (in keV).

e The third and fourth lines contains the power levels in Eq. (1), Prrem,
Peory Psynes Pouzy aNdPog, in that order. All are in watts.

¢ The fifth line gives the total beta, the beta due to fast alpha particles, and the
energy confinement time; (in seconds).

¢ In the sixth line the computed values far(an input in this case)}/;, and
7,4 (in seconds) are presented.

¢ Finally, the last line shows the error parameter; it equals zero for a succesful
calculation. The meaning of nonzero values is discussed in Sec. D.

The time-dependent calculation produces columnar output in thielfile ;
the output obtained with the sample input file is presented in Fig. 3. From left to
right the columns represent: the time during the dischafgeseconds)({n.) (in
units of 10%° m=2), (T} 4, (iNkeV), P.,, Puwzs Porrs Peony Prad = Porem + Psyne (@l
in mega-watts)iV;,; (in mega-joules)np +nr)/n., andW.,, (in mega-joules).
No graphics are produced directly by tASPECTcode; we instead format this
output so that it can be easily “pasted” into a graphing or spreadsheet application
running on an Apple Macintosh computer. A plot produced using this data is
shown in Fig. 4.

The value ofP, . ... and the value ofV;,,(¢;) at are listed separately at the
end of the file for clarity.
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Appendix A.  First Namelist Input Variables

Variables input via the first namelist control the steady-state calculation. They
are described in the following table. The first column gives the variable name. Its
default value and units are given in the second column. If assigned a symbol in
the text, it is indicated in the third column; the equation or section in which it is
defined (if applicable) is shown in the fourth column. The last column provides a
brief description.

You can find this table and the one associated with the next appendix at
the end of the document.
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Appendix B. Second Namelist Input Variables

The variables in the second input namelist control the time-dependent cal-
culation. They are described in the following table. The first column gives the
variable name. Its default value and units are given in the second column. If as-
signed a symbol in the text, it is indicated in the third column; the equation or
section in which it is defined (if applicable) is shown in the fourth column. The
last column provides a brief description. Some of the defaults for this namelist are
specified by variables. Some of these will correspond to input parameters from
the first namelist. Others will refer to values determined during the steady-state
calculation; these are denoted by a subscript “ss”. Second namelist variables ap-
pearing in the default specification of another variable will take on their default
values during the calculation. A handful of externally defined variables appear in
the default specifications of the field ramps for historical reasons. Their names
and corresponding values arezt£2 = (0.748, zzt£3 = 0.593, zztf4 = (.889,
tramp = 7.5 S,tdump = 7.5 S,tnull = tramp/1.9445, andtburn = 10. S.
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Appendix C. Functions and Subroutines

The following is a list of the subroutines included in tA6 PECTcode and a
brief description of their purpose. Note that the routines beginning Rlitlare
part of the steady-state calculation, while those starting Widtfform the time-
dependent part. More details can be found in the internal documentation of the
code.

RUNPLSSets defaults, reads namelist, and initiates calculations.

PLMAIN Controls steady-state calculations.

PLHERE Evaluates performance at maximym) and(7'),,, allowed by limits.
PLOPTMSearches?'),,, to determine optimum performance allowed by limits.
PLMICT Given(T')4.,, evaluates limitingn.) and computes performance.
PLFMI Calculates the ignition margif/;.

PLCTAU Calculates the confinement time multiplier required to achieve the
specifiedM ;.

PLFNDN Finds maximumr.) within the prescribed limits.
PLBETC Computess;, + 5o — Bimaz-

PLPHTC Evaluates the difference between the actual and limiting heating pow-
ers.

PLPRT2 Auxiliary routine for PLPHTCto differentiate forms for the heating
power.

PLPOW@etermines difference between power inputs and losses.
TDMAIN Controls time-dependent calculations.

TDELW Integrates differential equation to finl;,. (¢ ;).
TDWDOEvaluatesiWV,,,/dt, dNy./dt, anddW .. /dt.

TDWJ Dummy function fol.SODE
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TDGET Determines plasma parameters at a given time.
TDPAUXEvaluates the auxiliary power at a given time.
TDINTP Linearly interpolates input waveforms between time breakpoints.

SLSODEPackage containing Hindmarsh’s LSODE subroutine[36].

In addition a library of utility routines is used. This library, callBOPHYS
includes:

BRENT Determine the minimum of a function using Brent’s method. [38]
EVBETA Evaluates? quantities and fast alpha to electron density ratio.
EVTAUE Evaluates the energy confinement time.

PALPHA ComputesF, based on Hively’s fit.[14]

SETCON Sets commonly used constants.

SETFRM Computes profile form factors.

SETPOW Calculates nonconduction terms in the power balance.

SIMPSN Calculates a definite integral using Simpson’s rule.

STRIPX Strips comments following “I" from input files.

VOLARE Computes volume, cross-sectional area, surface area, and arc length.

ZBRENT Finds root of a function using Brent's method.[38]

Appendix D. Error Codes

The error code reported in the output following a failed steady-state calcu-
lation contains information about the origin of the error condition. In fact, the
code is a string of digits, one for each routine in the subroutine calling chain
(see App. E). The rightmost digit corresponds to the routine highest in the chain
(PLMAIN). The leftmost digit is generated by the routine responsible for initiat-
ing the error condition. The value of each digit indicates which error checking
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statement in that routine detected the error. In the code, these can be identified
by searching for assignments of the varidkder . Thus, one can track down an
error by back-tracking along the calling chain, using the error code to locate the
problem in each subroutine.

In the time-dependent calculation, specific error messages are provided in the
output.

Appendix E. Calling Sequence

The following outline provides a general description of the logic of the code
and the order in which the routines are called. For simplicity, many details are left
out here. But, enough information is provided to allow the reader to answer any
further questions by referring to the code itself. Subroutines not listed here are
elementary enough in their function that no detail beyond the descriptions given
in App. C is necessary.

Main Program

A. Call STRIPX
B. CallRUNPLS

1. Set defaults.
Read first namelist.
CallVOLARE
CallPLMAIN
Write steady-state output.
CallITDMAIN
7. Return

C. Stop

ook wd

PLMAIN

A. Call SETCON

B. Call SETFRM

C. Calculatel,, qqy-

D. Evaluates,,., [EqQ. (71)],(n.)m. [EQS. (57), (59), and (60)].
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E. CallPLHERKnoptm = 0) or PLOPTMotherwise)
F. Return

|. PLHERE

A. If 1 < nmurak < 4, set(n.) = (n¢)maz, and

1. fnpwr = 1 0or3 < npwr < 5, useZBRENTt0 solvePLPHTC = 0.
for (1) 4w,

2. Else ifnpwr = 2, set(7T') 4, = tkvmax (input),

3. Else, us& BRENTto solvePLBETC = 0. for (1') .,
B. Else, se{T),, = tkvmax (input), and

1. UsePLFNDNo solve for(n.).
C. CallPLMICT
D. Return

IIl. PLOPTM

A. Bracket a minimum oPLMICT between(T"),, = 1 keV andtkv-
max.

B. UseBRENTto solve for minimum irPLMICT = (T') 4.,
C. Return

lll. PLFNDN
A. Set(n.) = (ne)max;

1. If noptm # 0, and(n.) is belowspecified power op limit, Re-
turn.

B. If npwr = 1 or3 < npwr < 5, SOIVePLPHTC = 0. for (n.),
C. Else, us BRENTt0 solvePLBETC = 0. for (n.).
D. Return

IV. PLMICT

A. If noptm # 0, then
1. If I < nmurak < 4, andnpwr = 2, set(n.) = (n¢)maz-
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2. Else, usé’LFNDNo solve for(n.).
B. Call SETPOW
C. If ncig # 0, ¢, = PLCTAU( M),
D. Else,M; = —PLFMI(c,).
E. Return

V. PLCTAU

A. EvaluateP,,.(M;) [Eq. (77)].

B. If npswtc # 0, evaluate lower bound far,. [Eq. (78)],
C. Else, set lower bound tg = 0.1.

D. UseZBRENTto solvePLPOWC = 0.

E. Return

VI. PLFMI

A. If 3 < npwr < 5, may have determine#tl, .. in solvingPLPHTC = 0.,
1. EvaluatePLPOWC
2. If PLPOWC < 103 W, Return.

EvaluateF,... o [EQ. (81)].

Use as upper or lower bound, depending on sigA.of ;.
UseZBRENTto solvePLPOWC = 0. for P,,...
CalculateM; [Eq. (72)].

SetPLFMI = — M; (use “-” sinceBRENTSsolves for minimum).
G. Return

mmOOw

VIl. PLBETC

A. Evaluates [Eq. (70)].
B. SetPLBETC = 3 — S4z-
C. Return

VIIl. PLPHTC

A. Call SETPOW
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B. If npwr = 1, SetPLPHTC = P, — xpalmx,

C. Else,

1. CallPLPRT2
a. Ifnpwr =3, P, = Poy + xpalmx,
b. If npwr = 4, P, = xpalmg,
c. Else fpwr = 5), P, = xpalmx + P,.4.
2. Ifncig=1,
a. SetP, = P, /M.
b. SetPLPHTC = P, — P,.
3. Else,
a. SetP, = P, + Pop.
b. SetP,.., = P, — P;.
C. SetPLPHTC = PLPOWC( Py, ).
4. Return

IX. PLPOWC

A. CalculateF;, [EqQ. (46)].

o0 w >

mom

moOOow

Setry = EVTAUE(P,;,).
Evaluater,, [Eq. (29)].

SetPLPOWC = P, + Prag — (P + Por + Paus).
Return

TDMAIN

Set defaults.
Read second namelist.
Rescale density waveform.

If nfindp = 0, evaluatéV,,.(¢ ;) USINQTDELW( Py vz maz) (SEtWior s =
0.),

Else, us BRENTo solveTDELW = 0.
Return

|. TDELW
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A.
B.

CalculateWV;,; and Ny, att,,;; from input.
Loop over output time-step§t:

1. CallLSODEo integrateTDWDO®ver nextAt.
2. Write output if this is the last call ttDELW

C. SE‘ITDELW - Wtot(tf) - Wtot,f-

D. Return
[I. TDWDOT

A. Call TDGET

B. CallSETPOW

C. UseTDPAUXo evaluatel’, ..

D. Limit P, by feedback if needed.

E. Calculate?,, [Eq. (46)].

F. Setry = EVTAUE(F,,).

G. Evaluatel.,, [Eq. (29)].

H. CalculatedW,.;/dt, dNy./dt, dW.../dt [EQs. (2), (3), and (74), re-

spectively].
l. Return
. TDGET
A. UseTDINTP to evaluates, 6, Z s, (nc), nue/ne, Br, 1, T, ¢, at
present time-step

B. If aqcyl(:) specified, use.,(t) to seta, R [Eq. (8)],
C. Else, us@DINTP to evaluater, R.
D. CallVOLARE

E. If cash # 0, set®i= = %

F. Return

IV. TDPAUX

A. Iffirst call, rescaleF,.,, waveform, determinér ,,, ..
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B. If time dependence o, specified, us&@DINTP to evaluate’,,,.. at
present time-step

C. Else, evaluatd’,,. [Br(t)/ Brm..) according to default prescription
[Eq. (76)].
D. Return
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Figures

Fig. 1. Sample input file for a BPX reference discharge[10].
Fig. 2. Sample output from the steady-state calculation.
Fig. 3. Sample output from the time-dependent calculation.

Fig. 4. Plot of the time evolution of the various terms in Eq. (1) produced using
data from the sample run, a BPX reference discharge[10].
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$input

calpha = 1.0 ! Overall multiplier on P_alpha

cbrem = 1.0 ! " " " P_brem

ccon = 1.0 ! " " " P_con

coh = 1.0 ! " " " P_OH

csync = 0.0 ! " " " P_sync

cip = 0.0 I Multiplier on I_p(q_95) expression

rminor = 0.795 ! Plasma minor radius (m)

rmajor = 2.59 ! " major " (m)

elong = 2.000 ! " elongation

xtring = 0.350 ! " triangularity

btor = 8.10 | Toroidal magnetic field (T)

curma = 1.06el I Plasma current (MA)

xpalmx = 6.39e7 I Maximum heating power (W)

nmurak = 4 I Maximum density is denmax

npwr = 4 I Use xpalmx to limit P_alpha + P_aux + P_OH
ncig = 0 ! Calculate ignition margin

noptm = 1 I Optimize choice of n and T

denmax = 5.e20 I Maximum <n_e> (m**-3)

ltaue(1) = 1 8 I Neo-Alcator & specified exponent tau_E scalings

cctaue(l) = 1. 1.85 ! Confinement multipliers
I ITER-P '89 scaling exponents:

txp(1) = 0.0381 ! constant

txp(2) = 0.5 ! aibar

txp(3) = 0.5 ! elong

txp(4) = 0.85 I curent (MA)

txp(5) = 0.1 ! deneln (1.e19 m**-3)

txp(6) = 0.2 ! btor (T)

txp(7) = 0.3 ! rminor (m)

txp(8) = 1.2 I rmajor (m)

txp(9) = -0.5 I Pinput (MW)

Ictaue = 1 ! tau_E is minimum of the two pieces

npswtc = 0 ! tau_E is written in terms of plasma energy

aibar = 2.5 ! Average mass of ionic species

xzimp = 6.0 ! Impurity charge

xzeff = 1.65 | Effective ion charge

rnane = 0.025 ! ratio of helium to electron density

rndndt = 0.5 ! ratio of D t o D + T density

resnc = 2.5 I Neoclassical resistivity correction

Iform = 3 | Trapezoidal T, parabolic density profiles

nform = 101 ! Number of elements in radial profiles

alpn = 0.5 ! Density profile exponent

xtmixl = 0.29 I r_mix / a for temperature profile

$end

$tdlist

ttbk(1) = 0.0 27.5 ! Time breakpoints for confinement parameters
ntnbk = 6 I Number of breakpoints in tnbk
tnbk(1) = 00 75 80 110 175 27.5 | Breakpoints for density
adenav(l) = 0.0 05 0.5 1.0 1.0 0.0 | Relative density values
ntpbk = 6 ! No. of breakpoints in tpbk
tpbk(1) = 0.0 795 8.05 2245 2255 27.5 ! Breakpoints for P_aux
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apaux(l) = 0.0 0.0 1.0 1.0 00 0.0 | Relative P_aux values

nfindp = 0 | Calculate Wtot(t)

nfdbak = 2 | Feedback to maintain P_aux+P_alpha+tP_OH < xpinmx
tfinal = 20.0 ! Time to end integration (s)

xpaumx = 20.0 | Peak auxiliary power (MW)

xpinmx = 100.00 ! Feedback level (MW)

dtout = 0.5 ! Interval between output (s)

$end

FIG. 1
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current =
density =
P-alpha =
P-sync
beta
c-tau
ierr =

1.0600E+07 A

1.9877E+20 m**-3, temperature =

9.6429E+00 keV
4.1945E+07 W, P-brem =

= 7.7367E+06 W, P-con = 5.6163E+07 W
0.0000E+00 W, P-aux = 1.9955E+07 W, P-oh =  2.0001E+06 W
2.3303E-02, beta-alph = 1.2470E-03, tau-E =  9.5300E-01
1.8500E+00, ig. marg. = 6.5641E-01, tau-ig = 1.5647E+00
0

FIG. 2
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t
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500
7.000
7.500
8.000
8.500
9.000
9.500

10.000
10.500
11.000
11.500
12.000
12.500
13.000
13.500
14.000
14.500
15.000
15.500
16.000
16.500
17.000
17.500
18.000
18.500
19.000
19.500
20.000

ne-avg
0.265
0.331
0.398
0.464
0.530
0.596
0.663
0.729
0.795
0.861
0.928
0.994
0.994
1.159
1.325
1.491
1.656
1.822
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.988
1.888
1.789
1.690
1.590
1.491

Max. Paux =

Te-avg
1.708
1.877
2.042
2.194
2.334
2.464
2.587
2.705
2.820
2.932
3.042
3.151
3.468
5.362
6.457
7.349
7.831
7.963
7.876
8.311
8.651
8.912
9.109
9.256
9.365
9.445
9.503
9.546
9.576
9.598
9.614
9.626
11.564
13.548
15.418
17.188
18.803

Palpha
0.002
0.005
0.011
0.021
0.036
0.057
0.088
0.129
0.184
0.256
0.347
0.463
0.648
3.460
7.466
13.018
18.645
23.441
27.202
30.694
33.495
35.682
37.354
38.612
39.547
40.235
40.738
41.103
41.368
41.559
41.697
41.796
45.900
45.462
41.018
34.513
27.294

20.000 MW, Final

Paux
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
10.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000

Witot =

Poh
2.530
3.311
4.058
4.801
5.536
6.264
6.977
7.672
8.344
8.994
9.617

10.214
8.899
4.733
3.607
2.983
2.714
2.642
2.677
2.478
2.339
2.241
2171
2.122
2.086
2.061
2.043
2.030
2.020
2.013
2.009
2.005
1.631
1.376
1.211
1.099
1.026

Pcon
1.806
2.374
2.965
3.548
4117
4.673
5.203
5.706
6.181
6.627
7.043
7.431
8.178

12.645
15.228
19.436
26.677
32.751
37.464
41.718
45.200
47.968
50.116
51.751
52.976
53.884
54.550
55.037
55.391
55.646
55.831
55.964
64.242
69.063
68.840
64.549
62.642

32.743 MJ

FIG. 3

60

Prad
0.043
0.073
0.114
0.165
0.229
0.305
0.396
0.503
0.626
0.767
0.926
1.106
1.160
1.963
2.814
3.799
4.842
5.908
6.992
7.182
7.328
7.438
7.519
7.580
7.624
7.657
7.681
7.698
7.710
7.719
7.725
7.730
6.609
5.481
4.391
3.402
2.542

Witot

0.948
1.343
1.808
2.333
2.917
3.559
4.261
5.025
5.853
6.748
7.710
8.744
9.624
17.360
23.893
30.593
36.222
40.518
43.715
46.130
48.016
49.465
50.560
51.378
51.983
52.426
52.750
52.984
53.154
53.277
53.365
53.429
52.705
49.943
45.189
39.275
32.743

0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830
0.830

f-DT Wheat

0.979
2.445
4.292
6.514
9.113
12.086
15.432
19.149
23.232
27.677
32.481
37.641
42.965
56.804
71.531
88.226
107.582
129.477
153.509
179.298
206.575
235.036
264.417
294.496
325.099
356.090
387.365
418.848
450.481
482.224
514.045
545.924
578.918
612.702
645.095
674.599
700.635
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Name Default (units) Symbol Eq. or Sec. #| Description

aibar 2.5 (amu) A; Sec.24 average mass of ionic species

alpj 15 o Eq. (12) current density profile exponent

alpn 0.5 o, Eq. (12) density profile exponent

alpt 1.0 ar Eq. (12) temperature profile exponent

btor 8.1(T) Br Sec. 2.1 toroidal magnetic field

calpha 1.0 Cy Eq. (23) overall multiplier onP,

cbrem 1.0 Chrem Eq. (27) overall multiplier onp, .,

ccon 1.0 Ceon Eq. (29) overall multiplier onP.,,,

cctaue()) 1.0 cr, Eq. (32) jth ( = 1, 2) confinement multiplier
cip 1.0 Cr, Eq. (11) overall multiplier on/,(qs) expression
coh 1.0 Con Eq. (24) overall multiplier onPy

csync 0.0 Csyne Eq. (28) overall multiplier onP;,,,.

curma 10.6 (MA) I, Sec. 2.1 plasma current

denmax 5 x 10% (m=3) Sec. 3.1 maximum(n. )

elong 2.0 K Eq. (5) plasma elongation

gbeta 3.0 93 Eq. (71) Troyon coefficient

hugill 15 h Eq. (57) multiplier on Murakami form ofz. ...
Ictaue 0 Sec.2.4 determines means of combining confinement

scalings,

34




Name Default (units) Eq. or Sec. #| Description
Eqg. (32) = 0 = use exponentptaue ;
Eq. (33) otherwise=- take minimum confinement scaling
Iform 0 Sec. 2.2 controls specification of profile form factors,
= 1 = parabolic profiles;
= 2 = trapezoidal profiles;
= 3 = trapezoidal temperature profile,
parabolic density;
otherwise=- parabolic profiles;
> ( =, averages are computed numerically
ltaue()) 0 Sec.2.4 determinegth (; = 1, 2) 7 scaling expression,
Eq. (34) = 1 = neo-Alcator,
Eq. (37) = 2 = neo-Kaye,
Eqg. (36) = 3 = Kaye - Goldston;
Eqg. (35) = 4 = Goldston;
Eq. (40) = 5 = Kaye-All-Complex;
Eq. (41) = 6 = Kaye-Big-Complex;
= 7 = constant tauth ;
Eq. (42) = 8 = specified exponents;
Eqg. (38) =9 = T-10;
Eqg. (43) = 10 = Odajima-Shimomura,
Eqg. (45) = 11 = Rebut-Lallia;
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Name Default (units) | Symbol Eq. or Sec. # | Description

otherwise=- constant tauth

ncig 1 Sec. 3.1 determines nature of performance calculation,
= 0 = calculatesV/; andr;,;
otherwise=- solves fore.

nform 101 Sec. 2.2 number of elements in radial profile (form factor
arrays
nmurak 2 Sec. 3.1 determines formula for limiting density,

= 1 = Hugill limit;

= 2 = Greenwald limit;

= 3 = JET limit;

= 4 = specify usingdenmax;
otherwise=- calculategn.) usingnpwr

noptm 0 Sec. 3.1 optimization switch,

= 0 = carry out to calculate performance at
intersection of limits;

otherwise=- search along limiting boundary
to find (n.) and(1'),4, yielding maximum

performance
npswtc 1 Sec.24 = 0 = 7 is expressed as a function bf,,;;
otherwise=- 7 is expressed as a function Bf,
npwr 1 Sec. 3.1 specifies form of limiting power,
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Name Default (units) | Symbol Eq. or Sec. # | Description
= 1 = limits (n.) or (1) 4, so thatP, < xpalmx;
= 2 = specifies maximum temperature
via tkvmax (only if1 < nmurak < 4);
= 3 = limits (n.) or (1) 4, So that
P, 4+ P, < xpalmgx;
= 4 = limits (n.) or (1) 4, So that
Py 4 Pous + Por < xpalmx;
=5 = limits (n.) or (1) 4, So that
Py 4 Powe + Porg — Praqg < xpalmx;
otherwise=- limits (n.) or (T") 4., BY Brax
nsctor 999 Sec. 2.1 number of sectors used in calculationofindV’
g95 3.2 qGos Sec. 2.1 specified MHD safety factor &% flux surface
refl 0.9 R Eq. (28) synchrotron radiation reflectivity of wall
resnc 2.5 INC Eq. (24) neoclassical resistivity correction
rmajor 2.59 (m) R Eq. (4) plasma major radius
rminor 0.795 (m) a Eq. (4) plasma minor radius
rnane 0.0 NHe/Ne Sec. 2.5 ratio of helium to electron density
rndndt 0.5 e Sec. 2.5 ratio of deuterium to deuterium plus
tritium density
tauth 0.5 (s) Tth Sec.2.4 constant confinement time for use

with ltaue@i) =7
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Name | Default(units) | Symbol | Eq.orSec.#| Description

tkvmax 10.0 (keV) Sec. 3.1 maximum(7") 4.,
txp(j) — t; Eq. (42) externally specified exponents for use
with ltaue(i) =8,
txp(1) 0.0 overall constant;
txp(2) 0.0 exponent ond;;
txp(3) 0.0 exponent ong;
txp(4) 0.0 exponent on,/10°%;
txp(5) 0.0 exponent o, /10'?;
txp(6) 0.0 exponent oBr;
txp(7) 0.0 exponent on;
txp(8) 0.0 exponent onk;
txp(9) 0.0 exponent on?,, /10°
xdmix1 0.0 Eq. (13) determines.,;/« for the density profile,
> 0 = rpix/a = xdmixl,;
otherwise=- ryix/a = 0.27 + 1/q95 (Ref. 40)
Xmi 1.0 My Eq. (72) desired value of/; in solving forc,
Xpalmx 1 x 108 W Sec. 3.1 maximum alpha or heating power
Xptaue -2.0 T, Eq. (32) exponent for combining confinement scalings
xtmix1 0.0 Eq. (13) determines,;;/a for the temperature profile,
> 0 = rpix/a = xdmixl,;
otherwise=- ryix/a = 0.27 + 1/q95 (Ref. 40)
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Name | Default(units) | Symbol | Eq.orSec.#| Description

xtring 0.35 ) Eq. (4) plasma triangularity

xzeff 1.65 Zegs Eq. (53) effective ion charge

Xzimp 6.0 A Sec. 2.5 impurity charge

ydedgl 0.0 Eqg. (13) density pedestal at edgeq,./no
ytedgl 0.0 Eqg. (13) temperature pedestal at edfg,./ 7o
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Name Default (units) | Symbol Eq. or Sec. #| Description

abtor(i) — (M Br(t) Sec. 3.2 plasma current at timebk(i) , 1 < ntibk

abtor(1) btor * zztf2

abtor(2) btor * zztf4

abtor(3) btor

abtor(4) btor

abtor(5) btor * zztf3

actaue(i,)) Cr, 58 ¢, (1) Sec. 3.2 confinement time multipliersj(= 1, 2) at
timettbk(i) ,7 <nttbk

acurnt(i) —(A) 1,(t) Sec. 3.2 plasma current at timebk(i) , 1 < ntibk

acurnt(1) 0.0

acurnt(2) L, s E?ﬁ;

acurnt(3) Ly ss

acurnt(4) Ly ss

acurnt(5) 0.0

adenav(i) — <i”>it (1) Sec. 3.2 relative (todenflt ) average electron density
at timetnbk(i) ,7 < ntnbk

adenav(1) 0.0

adenav(2) 1.0

adenav(3) 1.0
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Name Default (units) Symbol Eq. or Sec. #| Description

adenav(4) 0.0

aelong(i) — k(1) Sec. 3.2 elongation at timebk(i) ,7 < ntbk

aelong(1) 1.0

aelong(2) 0.7 * elong

aelong(3) elong

aelong(4) elong

aelong(5) 1.0

apaux(i) 0.0 Paf eus— (1) Sec. 3.2 relative (toxpaumx) auxiliary power at
timetpbk(i) ,7 < ntpbk

aqgcyl(i) 0.0 Sec. 3.2 cylindrical safety factor at timék(i) ,: < ntbk

armaj(i) rmajor f rminox R(t) Sec. 3.2 major radius at timébk(i) , < ntbk

— armin(i)

armin(i) —(m) a(t) Sec. 3.2 minor radius at timebk(i) ,: < ntbk

armin(1) 0.0

armin(2) rminor

armin(3) rminor

armin(4) rminor

armin(5) 0.0

arnane(i) rnane Pl (1) Sec. 3.2 helium ash concentration at tinebk(i)
1 < ntnbk

atauth(i) tauth (s) Ten(t) Sec. 3.2 specified energy confinement time at

timettbk(i) i < nttbk
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Name | Default (units) | Symbol | Eq.or Sec. # | Description

atring(i) — o(t) Sec. 3.2 triangularity at timebk(i) ,7 < ntbk

atring(1) 0.0

atring(2) 0.2 % xtring

atring(i) xtring

atring(i) xtring

atring(i) 0.0

azeff(i) xzeff Zess(t) Sec. 3.2 effective ion charge at timmbk(i) ,7 < ntnbk

cash 0.0 C'ash Eq. (3) multiplier on source and sink iy, /dt equation

denflt (ne)ss (M) (ne) s Sec. 3.2 maximum volume-averaged density

dtout 0.2 (s) Sec. 3.2 length of output time-steps

nfdbak — Sec. 3.2 determines feedback mode;

npwr — 2 if 3 < npwr <5,
0 otherwise;

=1= Pouuw+ Ps < Poynas;
=2= Pus+ P+ Porn < Pimass
=3 = Pue+ Lo+ Por — Prod < Pinmas,
otherwise=- no feedback

nfindp 0 Sec. 3.2 determines nature of time-dependent calculation,
= 0 = calculatedV,,,(t);
otherwise=- solve forxpaumx required to
reachwtotf
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Name Default (units) | Symbol | Eq.orSec.#| Description

ntbk 5 Sec. 3.2 number of breakpoints itbk

ntibk 5 Sec. 3.2 number of breakpoints itibk

ntnbk 4 Sec. 3.2 number of breakpoints itnbk

ntpbk 0 Sec. 3.2 number of breakpoints itpbk

nttbk 2 Sec. 3.2 number of breakpoints itibk

tauphe 10 (s) Ty He Eqg. (3) helium ash particle confinement time
tbk(i) —(9) Sec. 3.2 time breakpoint array for plasma shape,
tbk(1) 0.0 1 < ntbk

tbk(2) 15

tbk(3) tramp

tbk(4) tbk(3) 4 tburn

tbk(5) tbk(4) 4 tdump

tfinal tramp +tburn (s) iy Sec. 3.2 time at which integration is to end
tibk(i) —(9) Sec. 3.2 time breakpoint array for fields,< ntibk
tibk(1) 0.0

tibk(2) tnull

tibk(3) tramp

tibk(4) tibk(3) + tburn

tibk(5) tibk(4) + tdump

tinit 1.5(s) Linit Sec. 3.2 time at which integration is to begin
tkvini 2.0 (keV) Sec. 3.2 initial temperature of plasma

43




Name Default (units) | Symbol | Eq.or Sec.#| Description

tnbk(i) —(9) Sec. 3.2 time breakpoint array for plasma density,

tnbk(1) 0.0 1 < ntnbk

tnbk(2) tnbk(1) + tramp

tnbk(3) tnbk(2) + tburn

tnbk(4) tnbk(3) + tdump

tpbk(i) —(9) Sec. 3.2 time breakpoint array for auxiliary power,
¢ < ntpbk

ttbk(i) —(9) Sec. 3.2 time breakpoint array for confinement
parameters, < nttbk

ttbk(1) 0.0

tramp + tburn

ttbk(2) + tdump

wtotf Wiot,ss (J) Wiot s Sec. 3.2 plasma energy to be reachedfatal

xnhein 0.0 Nite 0 Eq. (3) initial number of helium ash particles

Xpaumx 10.0 (MW) Pz maz Sec. 3.2 maximum value to be attained &,

Xpinmx — (MW) P max Sec. 3.2 maximum input power allowed during feedback;

XPlaOl(;mx +0.3 if 3 < npwr <5,
0 otherwise
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